
Progressive, Extrapolative Machine Learning
for Turbulence Modeling

Jiaqi Li, Xiang Yang

Collaborators
George Huang @ Wright State University

Yuanwei Bin @ Penn State
Lihua Chen @ Zhejiang University

Acknowledgment
Philippe Spalart @ Boeing

1

Background: classical turbulence modeling
We still rely on cost-efficient tools like RANS.
Scale-resolving simulations are costly at high Reynolds numbers.
RANS requires turbulence modeling.

Reynolds stress

RANS equations

Eddy viscosity

⌧Rij +
2

3
⇢k�ij = 2µTSijBoussinesq hypothesis

2

Conventional models are results of progressive modeling to account for different physics

The more complex models respect the less complex models and protect the learned empiricism,
e.g., the law of the wall.

Example: the Spalart-Allmaras model
The standard model, SA92: for free shear, wake, and flat plate boundary layer flows
Added corrections for system rotation [Dacles-Mariani et al. 95, 99]
Added corrections for wall curvature [Shur et al. 00]
Added corrections for compressibility [Spalart 00]
etc.

Background: data driven turbulence modeling

Example: Tensor basis neural network (TBNN) [Ling et al. 16]

Training data:
Duct, channel, jet in cross flow, flow around a square cylinder, converging diverging channel

Training is one-stop. No effort is made to protect the known empiricisms.

[Rumsey, Coleman, Wang 2022]

Target:
Reynolds stress

3

Data-enabled models are results of one-stop modeling

Data-enabled augmentations do not respect the known empiricism, e.g., the law of
the wall. The models do not generalize well to unseen high Reynolds numbers.

If we apply the TBNN to predict the mean velocity profiles in a channel:
Training: channel flow at friction Re = 590
Predicting: channel flow at friction Re = 5200
Does not protect the law of the wall

Objectives
§ Apply progressive modeling, which is human thinking, in machine learning
§ Requirements

§ The model is open to compatible corrections to a baseline
§ The more complex model respects the less complex model
§ The model can extrapolate to high Reynolds numbers

§ From Dr. Spalart, “The Mission and Requirements of a Turbulence Model”
§ Proposing a machine-learned model “for a specific flow” (e.g., periodic hill) is instructive, but is not

“a product”
§ Ideally, a new model will come with corrections for curvature, compressibility, or anisotropy

4

Motivation

AlphaGo: consider moves that will increase the probability of winning, human-like thinking.

AlphaGo thinks like a human. Through incrementing and iterating, it was able to transcend human intelligence.

Zen: consider all possible moves, machine-like thinking. AI will never beat human intelligence.

Why do we want an AI that thinks like a human?

Let us consider a field where AI has seen success: the game Go.

Theoretical foundation

Universal approximation theorem:
A feedforward network with a single layer is sufficient to represent any function.

We will consider single-layer feedforward neural nets, without loss of generality.

6

Extrapolation theorem:
For a bias-unit-free non-trivial neural network that maps from R1 to R1, we have

net(∞) = a constant
if we employ the sigmoid transfer function for all neurons, and

net(x) ∼x
for sufficiently large x if we employ the rectified linear unit (ReLU) as the transfer function for all neurons.

The extrapolative behavior of an FNN is determined by the activation function.

Neutral neural network theorem:
0 input guarantees 0 output if we remove all bias units in a fully connected single-layer feedforward neural
network.

It is possible to add neutral compatible corrections to an existing machine learning model.

Progressive machine learning
7

MODEL
⇤
(x,X) = MODEL(x) + CORRECTION(||X||2 · x,X)

The basic idea

MODEL: an existing model
x: parameterization of some basic physics, e.g., S and d.
X: parameterization of new physics, e.g., Omg.
CORRECTION: a data-enabled correction.
MODEL*: an augmented model.

CORRECTION:
Neutral: CORRECTION = 0, when X = 0 (neutral neural network theorem).
Extrapolative: design output to preserve known empiricisms at unseen Reynolds numbers (extrapolation theorem).

Example

Modeling the eddy viscosity
Constant stress layer (baseline, less complex model)
Constant stress layer + wake layer (more complex model)
Constant stress layer + wake layer + system rotation (even more complex model)

Progressive

Turbulent boundary layer

100 101 102 103 104

y+

0

10

20

30
U
+

Constant stress layer Wake

Equations

Target

8

Examples of progressive machine learning
Train for eddy viscosity in the constant stress layer

Network: sigmoid activated single-layer fully-connected feed-forward neural network, denote as netL
Output: ⁄𝜐!" 𝑦" --- extrapolation theorem guarantees the law of the wall
Training data: channel flow data up to 𝑦/ℎ = 0.015.

The resulting model: mdlL

Training data
goes here

Extrapolation

a priori test a priori test a posteriori test

9

Learns the log layer physics and extrapolates to high Re.

Examples of progressive machine learning
Train for eddy viscosity in the entire channel

Respects
old model

Extrapolates to
unseen Re

a priori test a posteriori test

10

Extrapolates

Learns the wake layer physics and protect the law of the wall in channel flow.

𝑅𝑒 = ∞

Examples of progressive machine learning
Train for eddy viscosity in boundary layer

Extrapolate

a priori test

11

a posteriori test

Learns the wake layer physics and protect the law of the wall in boundary layer.

Examples of progressive machine learning

Train for eddy viscosity in a rotating channel with small system rotation

Training data: 105 DNS from Huang & Yang 2021
Test data: 44 DNS from Huang & Yang 2021

y/h

Respects mdlC unseen conditions

12

Learns rotation physics and protect previous learned physics.

𝑣!" = netL 𝑦" 𝑦" + netC 𝑦" 𝑦/ℎ , 𝑦/ℎ 𝑦" + netR(𝑦" 𝑦/ℎ 𝛀 ", 𝑦/ℎ 𝛀 ", Ω#", Ω$", Ω%")

Conclusions
§ A new paradigm for machine learning, namely, progressive machine learning, is proposed and

validated.
§ In this framework, data-enabled turbulence models can be augmented like empirical models

according to the neutral neural network theorem.
§ We can control a network’s behavior when extrapolating according to the extrapolation theorem.
§ We apply progressive machine learning to progressively model the flow in the constant stress layer,

the entire channel, and rotating channel. We show that the more complex models do not “forget”
what it already “knows”.

13

14

A Progressive Re-calibration of
the Standard SA Model

Jiaqi Li, Xiang Yang

Collaborators
George Huang @ Wright State University

Yuanwei Bin @ Penn State
Lihua Chen @ Zhejiang University

Philippe Spalart @ Boeing

15

The standard SA model

§ Free shear: turbulence production + diffusion
&'!
&! = 𝑐()𝑆𝜈! +

)
*

+
+#"

𝜈!
+'!
+#"

+ ,#$
*

+'!
+#"

-

§ Log layer: destruction
&'!
&!

= 𝑐()𝑆𝜈! +
)
*

+
+#"

𝜈!
+'!
+#"

+ 𝑐(-
+'!
+#"

-
− 𝑐.)𝑓.

'!
/

-

§ Viscosity

&0'!
&!

= 𝑐() 7𝑆�̃�! +
)
*

+
+#"

𝜈 + �̃�!
+0'!
+#"

+ 𝑐(-
+0'!
+#"

-
− 𝑐.)𝑓.

0'!
/

-

The standard SA model is a result of progressive modeling

Progressive
m

odeling

§ The framework is progressive modeling.
§ We follow these steps but rely on machine learning tools.
§ We will limit the training data to mixing layer, wake, and channel (to test generalizability).

§ Baseline: flow convection &'!
&!

= 0

Ø Physics + Data
Ø ML: Bayesian optimization

Ø Physics + Data
Ø Data: high Re

Ø Physics + Data
Ø Data: high Re

16

Recalibration of 𝒄𝒃𝟏, 𝒄𝒃𝟐, σ

Bayesian optimization: 𝑐#$, 𝑐#%, 𝜎 a 3D parameter space
Training data: mixing layer and jet (plane jet and axis-symmetric jet).
Projection of sampled points

Progressive modeling

σ 𝑐%& 𝑐%'
SA 2/3 0.1355 0.622

SAM 2/3 0.1355 0.622

Red: least-worse point

Standard SA
Data-enabled SA

We expect the ML model to behave like the standard SA in free shear flows—
if the augmentation in the next steps do not destroy its behavior.

17

Recalibration of 𝒄𝒃𝟏, 𝒄𝒃𝟐, σ
Cost function

§ 𝜖 = ∑&'$(𝑤&𝜖&

§ 𝜖& =
∫ *!+*!,#

$,-

∫ *!,#+ ̅*!,#
$,-

⁄$ %

, 𝑤& = 1

§ 𝑓&,!: true value

Mixing layer Plane jet Axisymmetric jet

Example of a non-optimal combination
§ 𝜎 = 1.1548, 𝑐#$ = 0.1682, 𝑐#% = 0.6791

18

Recalibration of 𝒇𝒗𝟏, 𝒇𝒗𝟐

§ Viscosity

Progressive modeling

§ Training data: Channel flow at friction Re 5200.

Red: standard SA
Blue: neural network prediction

We expect the ML model to handle the viscous layer more competently than the standard SA—
if the augmentation in the next steps do not destroy its behavior.

𝜒 = �̃�!/𝜈

19

§ Near-wall behavior
§ Training data: Channel (FPG) and Couette-Poiseuille (APG & FPG) DNS data.

Recalibration of 𝒇𝒘
Progressive modeling

Log law

APG
FPG

Free shear

We expect the ML model to do better than the standard SA in wall-bounded flows.

Red: standard SA
Blue: Prediction of a neural net

𝑟 =
�̃�!

B𝑆𝜅%𝑑%

20

Recalibration for 𝒇𝒗𝟏, 𝒇𝒗𝟐, 𝒇𝒘
Channel flow

§ 𝑓1$ ≡ ⁄𝜈! �̃�!, where 𝜈! =
+23
⁄45 46

, �̃�! = 𝑢7𝜅𝑦
§ Transport equation of �̃�! can be written as

𝐷�̃�!
𝐷𝑡 = 𝑐#$𝑆�̃�! +

�̃�!%

𝜅%𝑑% 𝑓1% +
1
𝜎 𝜈 + �̃�!

𝜕%�̃�!
𝜕𝑥&%

+
1 + 𝑐#%
𝜎

𝜕�̃�!
𝜕𝑥&

%

−
𝑐#$
𝜅% +

1 + 𝑐#%
𝜎 𝑓8

�̃�!
𝑑

%

§ For channel flow, near wall region, �̃�! = 𝑢7𝜅𝑦, 𝑓8 = 1

0 = 𝑐#$𝑆𝑢7𝜅𝑦 + 𝑢7%𝑓1% +
1 + 𝑐#%
𝜎 𝑢7𝜅 % −

𝑐#$
𝜅% +

1 + 𝑐#%
𝜎 𝑢7𝜅 %

𝑓1% = 1 − 𝑆
𝜅𝑦
𝑢7

§ For channel flow, extend 𝑓1% to log-law region
§ �̃�! = 𝑢7𝜅𝑦 still exists

𝑓8 = 1
§ For channel flow, extend 𝑓1% to wake region

§ �̃�! = 𝜈!

𝑓8 =
𝑐#$𝑆�̃�! +

�̃�!%
𝜅%𝑦% 𝑓1% +

1
𝜎 𝜈 + �̃�!

𝜕%�̃�!
𝜕𝑥&%

+ 1 + 𝑐#%𝜎
𝜕�̃�!
𝜕𝑥&

%

𝑐#$
𝜅% +

1 + 𝑐#%
𝜎

�̃�!
𝑑

%

Blue: data can be obtained from DNS

21
Neural network detail
Use neural network to train 𝒇𝝂𝟏, 𝒇𝝂𝟐, 𝒇𝒘 with constrain
§ 𝑓1$ 0 = 0
§ 𝑓1% 0 = 1
§ 𝑓8 0 = 0
§ 𝑓8 1 = 1

§ To ensure 𝑓 0 = 0, we can train an intermediate odd function 𝑔 𝑥 and then 𝑓(𝑥) can be
calculated as: 𝑓 𝑥 = 𝑔 𝑥 − 𝑔(−𝑥).

§ One point in 𝑓 will map to two points in 𝑔.

§ To ensure 𝑓 1 = 1 and 𝑓 0 = 0, we formulate 𝑓 𝑥 = 𝑥 1 − 𝑥 𝑔 𝑥 + 𝑥 and train for 𝑔(𝑥).

22

§ 2D Airfoil-Near Wake
§ 2D Mixing Layer
§ 2D Coflowing jet
§ Axisymmetric Subsonic Jet
§ 2D Fully developed channel
§ 2D Zero Pressure Gradient Flat Plate
§ Axisymmetric Transonic Bump
§ NACA 0012 airfoil with different AOA
§ 2D WALL-Mounted Hump
§ Back-Facing Step

Validation
Test cases from NASA TMR website with same grid

Is the machine learning modeling better than the SA model?

23

Review
Baseline

24

Review
Baseline

§ Extrapolation and universality

Worse than the standard SA model.

Not worse for free shear flows.
25

Testing
2DANW: 2D Airfoil-Near Wake

Non-slip

Freestream, AOA	=
0

2DML: 2D Mixing Layer

Slip
Non-slip

Velocity Inlet

Pressure outlet

26

2DCJ: 2D Coflowing jet
Symmetry

Symmetry

Non-slip

Fr
ee

st
re

am

Velocity Inlet

Pressure outlet

𝑥 = 29 𝑥 = 96

freestream

Non-slip

Total Pressure Inlet

Pressure outlet

Axis

ASJ: Axisymmetric Subsonic Jet

Testing Not worse for free shear flows.

27

2DFDC: at 𝑹𝒆 =80,000,0002DFDC: 2D Fully developed channel at 𝑹𝒆𝝉 = 𝟓𝟐𝟎𝟎

2DZP: 2D Zero Pressure Gradient Flat Plate

Pressure outlet

Non-slip
Symmetry

Velocity Inlet

Non-reflect

𝑅𝑒> = 6500

Protect the law of the wall. Doing better.Testing

28

ATB: Axisymmetric Transonic Bump

Axis !
Non-slip

Velocity Inlet

Non-reflect

Pressure Outlet

Non-slip

Freestream
, AOA	= #

2DN00: NACA 0012 airfoil with different AOA

Testing

29

2DWMH: 2D WALL-Mounted Hump

More accurate prediction of reattachment.

Testing

30

BFS: Back-Facing Step

§ Velocity recovers faster.

Pressure outlet

Non-slip

Non-slip

Symmetry

Symmetry

Freestream

ℎ
9ℎ

BFS: Back-Facing Step with 𝟐𝒉

More accurate prediction of reattachment.Testing

31

Conclusion
§ The development of the SA model is itself progressive.
§ ML tools are employed to “re-calibrate” and “re-formulate” the model.
§ The progressive reformulation did not suffer from “catastrophic forgetting”.
§ The model behaves like the standard SA model in free shear flows.
§ The model is more accurate for flow separation.

§ We want to continue on this path to account for adverse pressure gradient, surface curvature…
§ We want to continue on this path but work on Wilcox k-omg model, FRSM, and the k-omg SST…

Thanks for your attention.

32

Yang could not make it to the conference.
I will take notes of questions I could not answer.
Yang will get back to you in a few days.

33

Lookup Table for 𝑓\], 𝑓\^, 𝑓_ is provided at:
https://github.com/yuanweibin/LookupTableForSAM

𝜒 0 0.1 0.2 0.3 0.4 0.5

𝑓1$ 0 1.6016e-4 6.6088e-4 0.0015 0.0028 0.0044

𝑓1% 1 0.9000 0.8000 0.7001 0.6004 0.5010

59.9 60.0

1 1

0 0

𝑟 0 0.01 0.02 0.03 0.04 0.05

𝑓8 0 2.0744e-4 5.8489e-4 0.0011 0.0018 0.0027

1.99 2.00

1.22 1.22

⋯

⋯

⋯

⋯

⋯

https://github.com/yuanweibin/LookupTableForSAM

34
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0 3.94E-05 0.00016 0.000372 0.000661 0.001052 0.001527 0.002091 0.002763 0.003522 0.004363 0.005317 0.006368 0.007496 0.008708 0.010031 0.011446 0.012935 0.014486 0.016129 0.017867

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
0.019682 0.021557 0.023484 0.025492 0.027573 0.029714 0.031903 0.034135 0.03643 0.038781 0.04118 0.043616 0.046084 0.048598 0.051156 0.053751 0.056376 0.059024 0.061704 0.064418

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
0.06716 0.069927 0.072712 0.075517 0.078348 0.081201 0.084073 0.086962 0.089864 0.092783 0.095719 0.098672 0.101639 0.104616 0.107604 0.110605 0.113619 0.116645 0.119681 0.122726

…….
27.05 27.1 27.15 27.2 27.25 27.3 27.35 27.4 27.45 27.5 27.55 27.6 27.65 27.7 27.75 27.8 27.85 27.9 27.95 28

0.999395 0.999454 0.99951 0.999563 0.999614 0.999661 0.999706 0.999748 0.999787 0.999823 0.999856 0.999886 0.999912 0.999935 0.999955 0.999971 0.999983 0.999993 0.999998 1

𝑓!"
𝜒

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1 0.947789 0.899999 0.85 0.800018 0.750043 0.700113 0.650226 0.600378 0.550647 0.501044 0.451505 0.40213 0.353031 0.304177 0.255471 0.207032 0.158982 0.111427 0.064191 0.017299

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
-0.02911 -0.0749 -0.12 -0.16464 -0.20875 -0.25218 -0.29478 -0.33651 -0.37764 -0.41808 -0.45769 -0.49633 -0.53393 -0.5708 -0.60689 -0.64207 -0.67619 -0.70916 -0.74126 -0.77255

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
-0.80292 -0.83224 -0.86039 -0.88745 -0.91375 -0.93917 -0.96361 -0.98695 -1.0091 -1.03038 -1.05091 -1.07058 -1.08928 -1.1069 -1.1234 -1.13921 -1.15434 -1.16867 -1.1821 -1.1945

……
60.05 60.1 60.15 60.2 60.25 60.3 60.35 60.4 60.45 60.5 60.55 60.6 60.65 60.7 60.75 60.8 60.85 60.9 60.95 61

0.000811 0.000783 0.000755 0.000727 0.000698 0.000668 0.000638 0.000604 0.000568 0.000528 0.000486 0.000442 0.000397 0.000352 0.000307 0.000263 0.00022 0.000179 0.000141 0.000106

𝑓!#
𝜒

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0 0.000207 0.000585 0.001128 0.001833 0.002695 0.003709 0.004873 0.006181 0.007629 0.009213 0.010928 0.012771 0.014737 0.016822 0.019021 0.02133 0.023746 0.026263 0.028878 0.031586

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4
0.034383 0.037264 0.040226 0.043264 0.046374 0.049552 0.052792 0.056092 0.059447 0.062852 0.066304 0.069797 0.073329 0.076894 0.080487 0.084106 0.087746 0.091402 0.09507 0.098746

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6
0.102855 0.108202 0.114115 0.120717 0.128018 0.136025 0.144738 0.154155 0.164269 0.175071 0.186545 0.198675 0.21144 0.224815 0.238773 0.253286 0.26832 0.283841 0.299814 0.316199

……
1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.2

1.013225 1.029612 1.045892 1.061976 1.077774 1.093198 1.108159 1.122568 1.136335 1.149372 1.16159 1.1729 1.183212 1.192438 1.200489 1.207276 1.212709 1.2167 1.21916 1.22

𝑓$
𝑟

Lookup Table for 𝑓\], 𝑓\^, 𝑓_ is provided at:
https://github.com/yuanweibin/LookupTableForSAM

https://github.com/yuanweibin/LookupTableForSAM

35

Recalibration
Without considering generalizability

§ If we use a BFS case to correct Reynolds stresses
§ We will have an extremely good prediction for BFS since the same 𝑢𝑣 as DNS data
§ But what will happen if we use this correction on channel flow?

The ML model must consider generalizability.

DNS

Corrected RANS

RANS

